INTEGRATING H₂ INTO OUR NATIONAL AND REGIONAL ENERGY PORTFOLIOS: KEY POLICY ISSUES

Joan M. Ogden

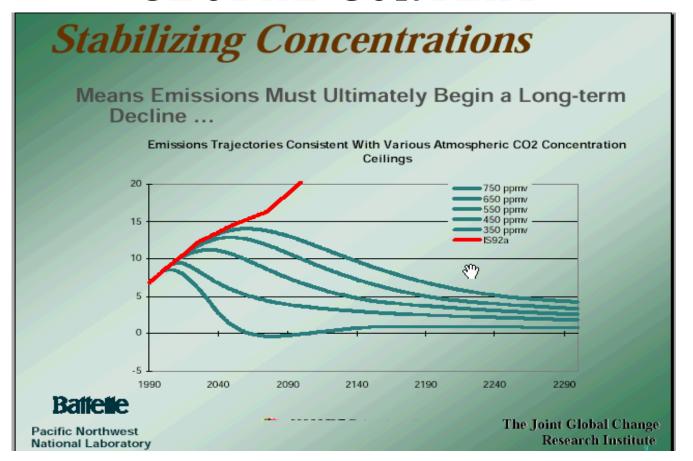
Research scientist

Princeton Environmental Institute

Princeton University

Princeton, NJ

ogden@princeton.edu

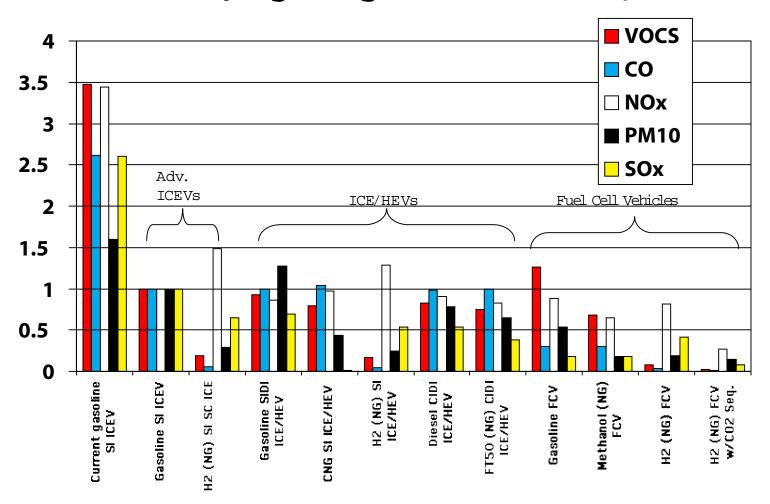

Presented at the

Mid-Atlantic Regional Hydrogen Infrastructure Forum

Philadelphia, PA

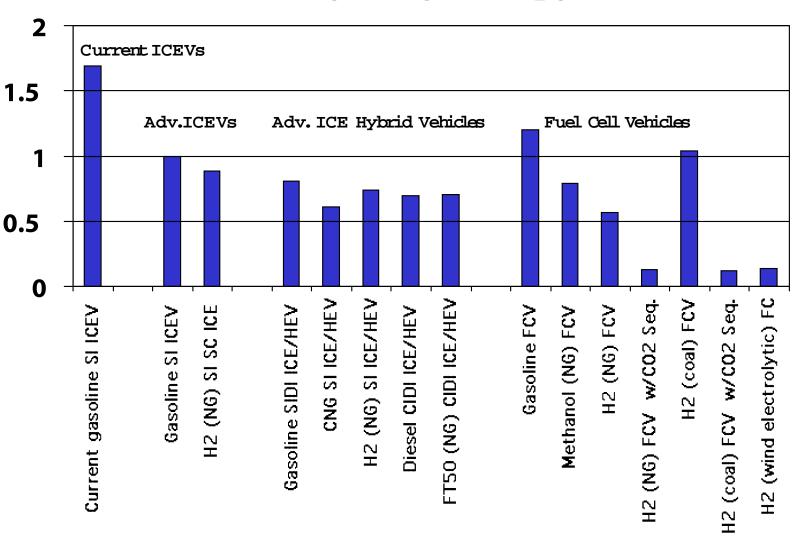
March 12, 2003

GLOBAL CONTEXT


To stabilize ${\rm CO}_2$ concentration, need to decarbonize the energy system at several times the historical rate of 0.3%/y. Even if electric sector is completely decarbonized by 2100, stabilization at 550 (450) ppm => 3 (5) fold reduction in carbon emissions from direct fuel use vs. IS92a.

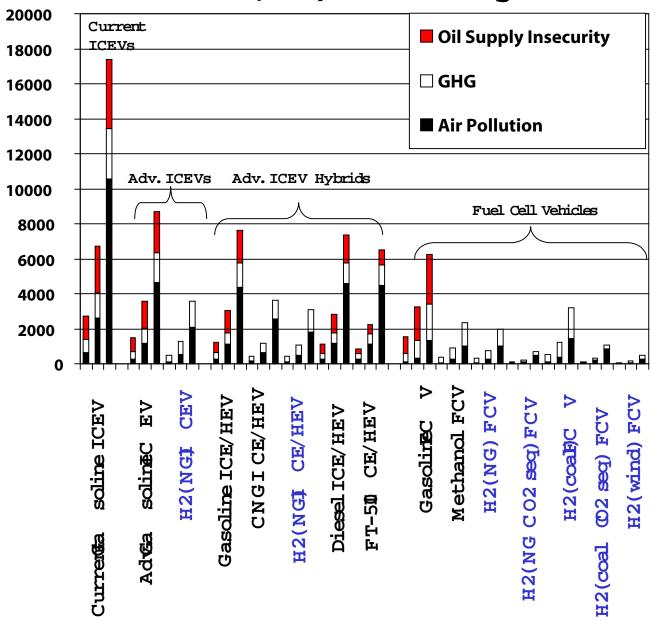
WHY CONSIDER H₂ AS A FUTURE ENERGY CARRIER?

- Zero or near-zero emissions at point of use
- Low to zero full fuel cycle primary emissions of both air pollutants and greenhouse gases (e.g. H₂ fuel cell vehicles offer lowest well-to-wheels emissions of any fuel/engine option)
- H₂ can be made from widely available primary resources (fossil, renewable, nuclear)
- Hydrogen offers **MULTIPLE** benefits
- Rapid progress in H₂ and fuel cell technologies


Full Fuel Cycle Emissions of Air Pollutants

(Emissions from Alternative Fueled Automobiles Normalized to Adv., Lightweight Gasoline ICEV)

FULL FUEL CYCLE GREENHOUSE GAS EMISSIONS


(Normalized to Adv. Lightweight 46 mpg Gasoline ICEV)

EXTERNAL COSTS OF ENERGY THERE ARE LARGE UNCERTAINTIES

- Greenhouse Gas Emissions \$50-200/tC (cost of reducing C emissions from energy system)
- Air Pollution Damage Costs associated with energy production and use (primarily long-term health effects of particulates). Uncertainty in cost (d.t. uncertainties in emissions from sources, atmospheric transport and chemistry, dose, health and other damage effects, economic value of damages) ranges over 1-2 orders of magnitude.
- Oil Supply Insecurity. For US, \$20-60 billion/y. (depending on how this is allotted to supply, ~\$0.35-1.05/galgasoline)

Range of Lifetime Externality Costs(\$) for Alternative Fueled Automobiles (Low, Mid and High Estimates)

EXTERNALITIES COULD BECOME AN IMPORTANT DRIVER FOR H₂

- H₂ vehicles have the lowest overall externality costs of any vehicle/fuel options.
- H₂ could address many issues simultaneously.
- It is highly uncertain today what precise economic values should be assigned to external costs of energy (climate change, health effects from air pollution, oil supply insecurity). However, H₂ is the least sensitive to these costs.

BARRIERS TO A HYDROGEN ECONOMY

- current lack of a H₂ infrastructure; "chicken and egg" problem
- current high cost of H₂ end-use technologies
- technical maturity: adapting current technologies for a H₂ energy economy could speed progress (e.g. onboard H₂ storage, small scale H₂ production systems, fossil H₂ production with CO₂ sequestration); need for codes and standards
- lack of policies reflecting the external costs of energy

MID-ATLANTIC REGIONAL CONTEXT

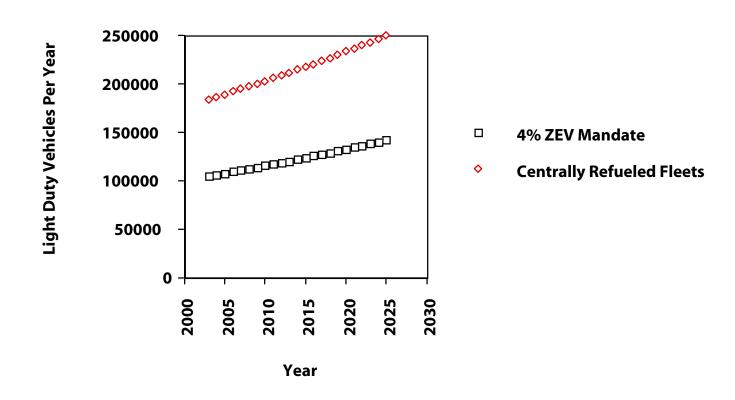
- Several non-attainment areas for ozone, CO, particulates
- State Climate Change Plans being developed
- Clean Cities programs (Philadelphia, Pittsburgh, Baltimore, DC, DE, North Jersey, West Virginia, Hampton Roads)
- Significant alternative fuel vehicle demonstration programs, and availability of alternative fuels like CNG.
- Home to H₂ suppliers and users (chemical and refinery operations), fuel cell and H₂ energy tech. companies,
- Mid-Atlantic region is large energy market, accounting for ~14% of passenger cars and 11% of light trucks in US.

H₂ ECONOMY: MID-ATLANTIC REGION

- Population = 30 million people
- ~18 million cars; ~7 million light trucks; ~2 million heavy trucks and buses (Ave. miles/yr/vehicle = 11,900; ave. fuel economy for Light Duty Vehicles = 20 mpg)
- Energy use 11 Trillion BTU/y (27% coal, 19% NG, 17% gasoline, 14% nuclear, 9% Distillate fuel)
- Installed Electric capacity = 95,000 MWe, ~45% coal-fired,17% nuclear, ~3kWe/person
- If all LDVs converted to H₂ FCVs, regionally
 - NG use would increase by ~29% OR
 - Coal use would increase by ~27% (~60 ${\rm CO_2}$ injection wells, each disposing of 2500 tonne/day would be needed for ${\rm CO_2}$ produced in coal->H₂ plants) OR
 - Electric power \sim 20,000 MWe would be needed on continuous basis. Or \sim 40,000 MWe off-peak power for 12 h/d.

POTENTIAL APPLICATIONS FOR H₂ VEHICLES INMID-ATLANTIC REGION

- Transit buses
- Other Centrally Refueled Fleet vehicles
- General Automotive Markets: Light Duty Vehicles

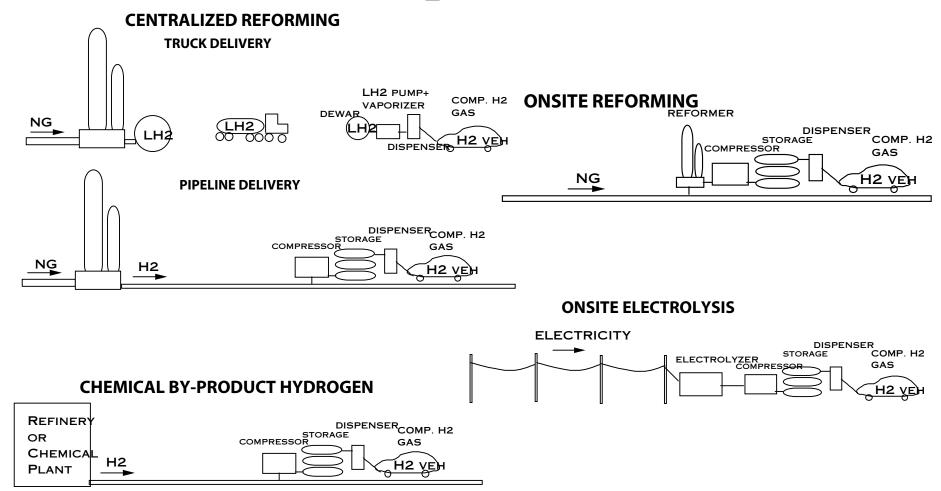

FLEETS ARE ATTRACTIVE INITIAL MARKETS FOR H₂ VEHICLES

- For centrally refueled fleets, only a limited fuel supply infrastructure is needed.
- High level of technical competence for personnel operating H₂ refueling station.
- Current compressed gas H₂ storage systems would provide adequate range for fleet service (analogous to CNG)

POTENTIAL ROLE OF CENTRALLY REFUELED FLEETS IN DEVELOPMENT OF H₂ AS A TRANSPORTATION FUEL

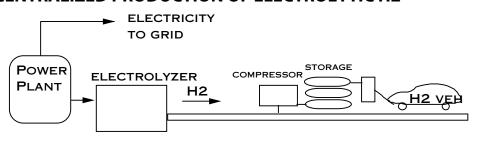
- In the US, ~ 0.8 million new light duty vehicles are sold into centrally refueled, non-rental fleets each year.
- Globally, centrally refueled urban transit bus markets could also be large (>200,000 buses/year by 2010).
- Centrally refueled fleet markets are potentially large enough to help "buy down" the cost of H₂ technologies such as fuel cell vehicles over the next decade via mass production, if they capture major fraction of these markets. (Mandated US ZEV and AFV markets might be large enough to accomplish significant cost reduction of H₂ FCVs.)

Mandated ZEV Markets and Centrally Refueled Fleet Markets in ZEV States (CA, NY, MA, VT)

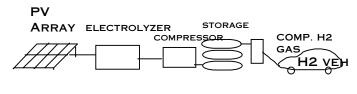

Fleet Vehicles in the Mid-Atlantic Region

(Mid-Atlantic Region has ~13% of US fleet LDVs

or ~0.1 million new centrally refueled LDVs per year.)

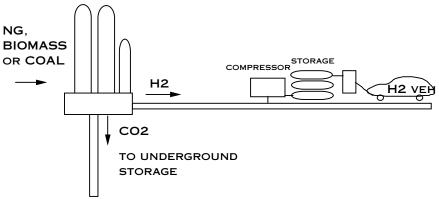

		1		1
	TOTAL#	FLEETAUTOS	FIEETIIGHT	ALFEET
	FIEETS	(% TOTAL	TRUCKS	VEHCES
	10+ VEH	AUTOS)	(% TOTALIT.	INCLUDING
			TRUCK\$	HEAW TRUCKS
				AND BUSES
				(% TOTAL
				VEHCES)
PA	6060	166715	200728	546352
N	4001	139493	157077	416552
DE	471	11403	205 10	49267
MD	2277	784 18	112233	262599
VA	3094	108253	122316	329802
W VA	920	24356	451 18	85987
DC	269	8160	19533	43804
TOTAL	17,092	536,798	677,515	1,734,363
		(3%)	(9%)	(7%)

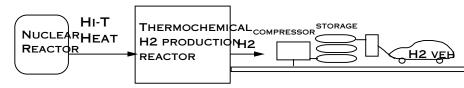
Near term H₂ Supply Options

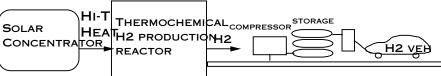


Long term H₂ Supply Options

CENTRALIZED PRODUCTION OF ELECTROLYTIC H2

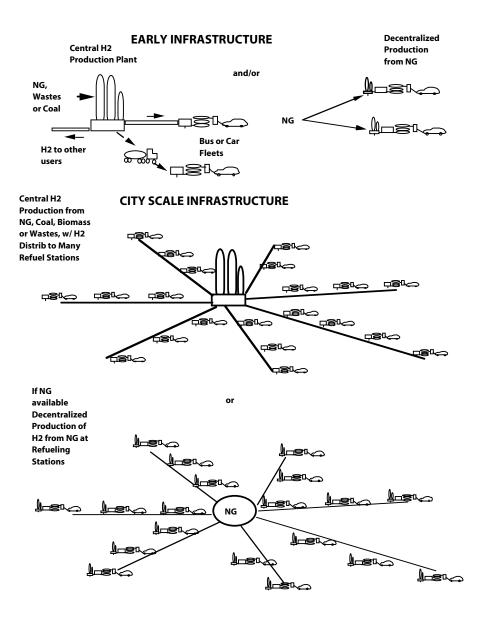

SOLAR or WIND ELECTROLYTIC H2


WIND TURBINE

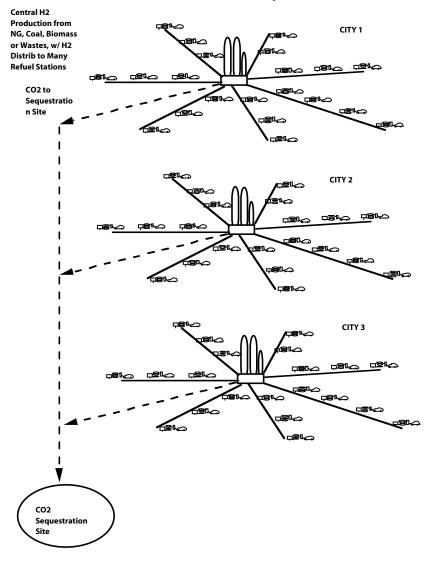


H2 FROM HYDROCARBONS w/CO2 SEQUESTRATION

H2 PRODUCTION VIA THERMOCHEMICAL CYCLES POWERED BY NUCLEAR OR SOLAR HEAT


H₂ SUPPLY AND DEMAND

H ₂ Demands	KG H/ DAY		
1 H ₂ FCCAR(82 MPG, 11,000 MI/Y)	0.375		
1 H ₂ FCBus (7 MPGE, 50,000 MI/Y)	20		
1001000H ₂ FCCARHEETCARS (82 MPG, 17,000 MI/Y)	58580		
100-1000FCBLsts	2009		
	20,000		
100,000 cars (~1% of cars in LA)	37,500		
1 million cars (~10% of cars in LA)	375 ,000		
10 million cars (~100% cars in LA)	3,750,000		
H ₂ Supplies	KG H/DAY	SIZE OFH2	SIZE OF
		FC CAREET	H ₂ FC Bs
		SUPPORTED	REET
COMPRESSEDH2 GAS TRUCK(1/DAY)	420	1120	21
LIQUID H2 TRUCK (1/DAY)	3600	9600	180
ONSTE ELECTRONZER	2.4-2400	6.4-6400	0.12120
ONSITE STEAM METHANEREFORMER (SMR)	2404800	64012,800	12240
Municipal Solid Waste Gasifier (waste from city of 100,000 people)	12 ,000	32,000	600
Industrial scale steam methane	48 ,000 -	128 ,000 -	2400 -
refor mer	480 ,000	1,280 ,000	24,000
Coal gasifier H ₂ plant w/CO ₂ seq.	150 ,000 -	400 ,000 -	7500 -
	600 ,000	1,600,00	30,000
H ₂ from 10% of NG Flow into LA	1,700,000	4,533,333	85 ,000
H ₂ from 1000 MW off-peak power	240 ,000	640 ,000	12,000


Conversion Factors:

1 kg H_2 = 0.14 GJ (HHV) ~1 gallon gasoline; 1 tonne/day = 0.4 million scf/d

 $1 \text{ kW H}_2 = 0.6 \text{ kg H}_2/\text{day}$; $1 \text{ FC Car requires} \sim 0.6 \text{ kW H}_2$ production capacity

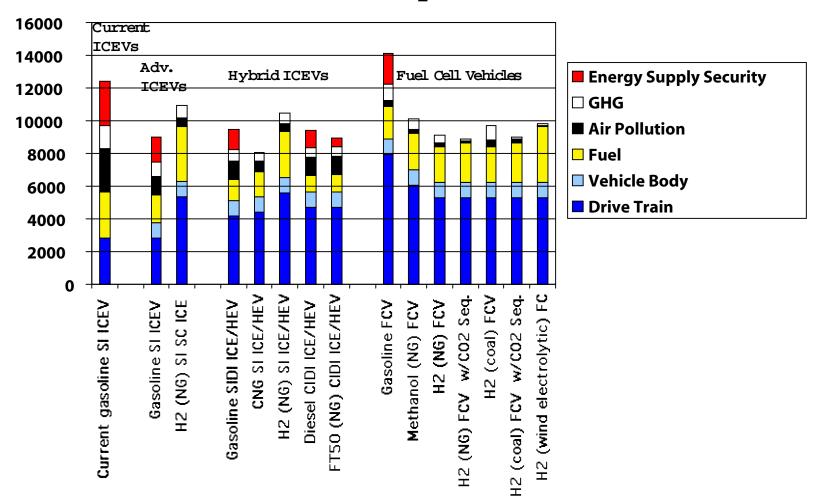
HYDROGEN ENERGY ECONOMY W/CO2 SEQUESTRATION

POLICIES WILL PROBABLY BE REQUIRED TO BRING ABOUT A H₂ ECONOMY, TNCLUDING VALUATION OF

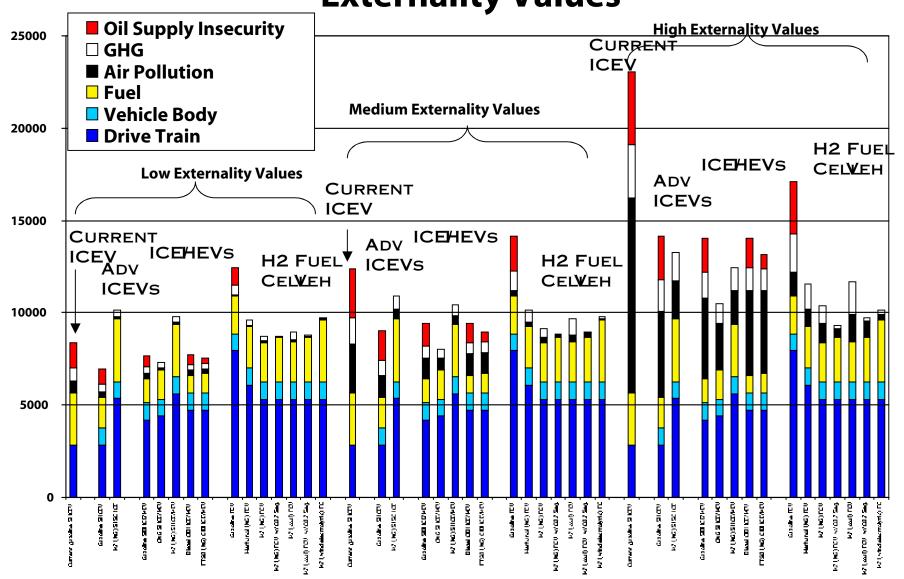
INCLUDING VALUATION OF EXTERNALITIES

In world where H_2 is widely used externalities will be more important than they are now. Political will and markets will evolve together, reflecting profound changes in how we view energy as a society.

Factors that could accelerate adoption of H_2 : 1) technical breakthroughs, and 2) potential market pull of fundamentally new products and services enabled by the use of H_2 or fuel cells.

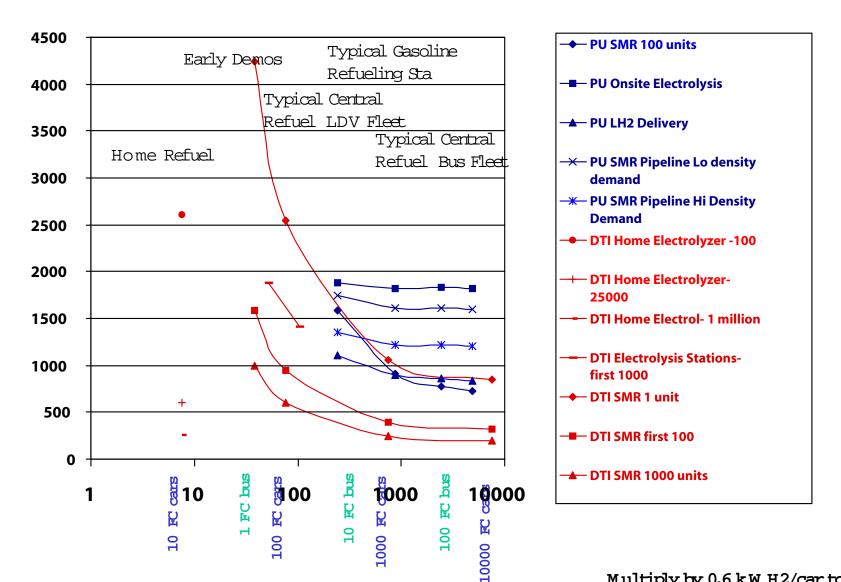

POLICIES TO ENCOURAGE USE OF H₂

- R & D on key concepts, where a breakthrough could speed the adoption of H_2 (e.g. H_2 storage, small scale H_2 production, CO_2 sequestration)
- Demonstration of H₂ production, refueling infrastructure and end-use technologies; development of codes and standards.
- Policies to encourage "buy-down" of H_2 technologies such as fuel cells and encourage H_2 infrastructure development. For example, use of H_2 in ZEV fleets.
- Policies to value externalities: emissions standards (air pollutants and Carbon), feebates for clean efficient vehicles, fuel economy standards, gasoline tax, carbon tax


CONCLUSION

- H_2 and fuel-cell technologies, although high-risk and long-term, have a potentially very high payoff. Therefore, they deserve significant government support now, so that they will be ready in 15–20 years, if and when we need to deploy them widely.
- Consistent policies are needed to encourage use of cleaner transportation systems with lower carbon emissions and to move away from our almost exclusive dependence on crude oil-derived transportation fuels
- Comprehensive strategy: Encourage use of clean, efficient internal combustion engine vehicles in the near term, coupled with a longer term strategy of research, development and demonstration of H₂ and fuel cells.

Societal Lifecycle Cost (\$) for Alt. Fueled Cars Including Drive Train, Lightweight Body, Fuel, and Externality Costs for Air Pollution, Greenhouse Gases, & Oil Supply Insecurity


Lifecycle Cost(\$) of Alternative Fueled Automobiles for Low, Median and High Externality Values

FLEET MARKETS IN THE US

- . ~ 12 million vehicles in the US (4 million cars, 5 million light trucks, 3 million heavy trucks & buses) are in fleets of 10+
- . \sim 75-80% of large business, utility and government LDV fleets and >90% of bus fleets are centrally refueled
- . About 40% of fleet cars are in daily rental use (these are not centrally refueled and are sold after 1-2 years), the rest are centrally refueled and are typically kept for 100,000 miles.
- . 90% of centrally refueled LDVs are in fleets of >100 cars. Typical size 100-1000 vehicles.
- . In the US, we estimate that ~ 0.8 million new light duty vehicles are sold into centrally refueled, non-rental fleets each year.
- . Ave. fleet LDV travels ~50-100% more miles/yr than ave. passenger LDV, so fleets use proportionally more energy)

Infrastructure Capital Cost (\$/kW) vs. Station Size

Refueling Station Size (kW H2 out)

Multiply by 0.6 kW H2/car to find \$/car